Skip to main content

Reply to "Continuing Saga …"

Guys, I appreciate the sentiment, but I'm going to press on. I have about three weeks and should get a lot done. I'd at least like to have it all moved over to the layout. Some folks are better than other in visualizing incomplete things in their future state.

Speaking of getting stuff done, I did get some more stuff done today. Boy! Being retired is sure great for model railroading. I'm literally in heaven having the opportunity to work on my favorite things each day. I enjoyed my professional life. It was interesting, enriching, had impact, and I made a decent living, but this is so much more enjoyable.

Got the railing on the cooling tower and built the two light poles for this particular unit. The carbide drill I'm using for the rail holes in the stanchions is 0.0315", not quite 0.032" of the wire, so it's a tight fit. Since I don't want to stress the stanchions while threading the rod, I used a actual 0.032" drill to relieve the holes a bit. This rod slid through nicely without breaking any stanchions. I like using the carbide drill for this size rod in normal circumstances since it offers a very snug fit when using brass pins for mechanical assembly.

CT Railings Comp.

I used my existing silicone mold to cast another light head and refined my building process a bit. I'm using new wire that I just got from Bulk Wire .com. It's 22 gauge red/black zip cord. While the conductors inside are 22 AWG, the insulation's a bit thick and I was afraid that it would pass down the 1/8" brass tubing I'm using for the poles. It just makes it, but I was worried about insulating the + lead. I was able to use a small piece shrink tubing to protect the little bit of exposed lead to not let it touch the pole which is serving as the negative pole.

I put the u-bend into the LED so it snugs up into the fixture housing. I carefully hold the leads at the LED end when bending them so they PUT NO BENDING LOAD inside the LED. They will be ruined if you overstress the leads. The red lead is pulled back down inside the pole, the LED negative lead is cut a bit shorter and then soldered to the outside of the pole. I used a combination of regular Weller iron and the American Beauty RSU.

CT Light Poles 1

Here're the two poles before painting. Right now I'm planning on running them down the outside of the unit to the base instead of mounting them on the roof and running the wires down inside. I may change my mind on this. A bit of masking tape on the LED lens is all that's needed before painting. The resin heads are held to the poles with med CA.

CT Light Poles 2

That's about all the Cooling Tower stuff I can do without painting so I got started on the loading rack. The plans call for using Plastruct I-beams, but I had none of this left. But I had the same size I-beam in brass. Working with brass is kind of fun. The micro saw cuts brass almost as easily as ABS... really! I had to cope notch the brass cross pieces.

I measured the plans vis a vis how the Plastruct railing material fits and adjusted the length a tad shorter so the stanchions come out evenly at the ends. On the inside they already come out evenly.

I tried soldering this with the RSU, but my unit seems a little too low wattage to handle the mass, so I turned to my mini-butane. This is one of the pencil-shaped ones that I found very useful, but it does require re-filling frequently. I applied so excess rosin flux, but it probably would have been a quicker job if I used acid-based flux and solder, instead of rosin-core.

I marked the locations of the cross pieces and then clamped them together using a combination of quick clamps and twisted black iron wire.

CT Load Rack Brass 1

CT Load Rack Brass 2

There are little extensions of the frame that support the outrigger platforms. These needed soldering too. In this case I used t-pins on the ceramic soldering pad.

CT Load Rack Brass 4

To get the exact platform height to a tank car, I took the Masonite base and a combination square onto the layout and aligned it with the loading platform of the tank car. I then took this measurement and made space blocks to use in erecting the platform.

CT Load Rack Fitting 1

I tried these blocks out back on the railroad and it came out too high.

CT Load Rack Fitting 2

It was because I forgot to subtract the thickness of the brass frame and the walkway material. So I trimmed the blocks by this much on the chop saw and retested the height.

CT Load Rack Fitting 3

The height is now correct and I can continue building the four upright supports. These will be ABS columns that will have bearing pads under the brass cross members. All of this will be epoxied together since it's a multi-media assembly. There's a short pipe rack that runs along the bottom that carries the liquid and gaseous feeds to the rack. There will be 3 light poles on the rack. I can count about 2 more on the distillation tower, 2 for the HP spheres, maybe one on the big liquids tank, 1 at the heater, and some others lighting the ground areas. So I'm probably going to have to make about 10 more lights. I also have to build some environmental dams around some of the units. Details, details...

 

Attachments

Images (9)
  • CT Railings Comp.
  • CT Light Poles 1
  • CT Light Poles 2
  • CT Load Rack Brass 1
  • CT Load Rack Brass 2
  • CT Load Rack Brass 4
  • CT Load Rack Fitting 1
  • CT Load Rack Fitting 2
  • CT Load Rack Fitting 3

OGR Publishing, Inc., 1310 Eastside Centre Ct, Suite 6, Mountain Home, AR 72653
800-980-OGRR (6477)
www.ogaugerr.com

×
×
×
×
×