Skip to main content

Reply to "Building and Evolution of a Fun Action Packed 50’s Era, 027 Layout, Ice Cream Cone on Roof Frosty Bar"

Post 8a   6-20-2016            Update  3-21-2024

Actionable Touch Track Diagram Control Panel Construction and Layout Wiring

It was decided to make a control panel with an Actionable Touch Track Diagram when I built my operating, switching 027 layout with total 31 Marx 1590 switches (on two control panels), starting in 1976 or forty year plus year ago.

Model Railroading book shows an active track diagram control panel with 7 toggle switches located on the diagram.  Most Lionel train show room layouts had a track diagram but the switch control switches were not on the diagram and their layouts mostly consisted of 5 or 6 isolated loops with only a few sidings.  The book Greenberg's "Model Railroading with Lionel Trains", Vol 11 of 1992,  page 40, shows a control panel with 38 Lionel switch controllers lined up and sheet with the track plan below.  I do not know how they identify which Lionel switch controllers operates which track switch.

I have had extensive experience, from 1965 to 2010 or so,  with flow chart diagrams control panels in several chemical and refinery plant control rooms.  These control panels were often from  knee high to ceiling and grouped by function with 10 to 15 feet of width each.  They had instruments to control flows, temperature, pressure, etc for various spots in the units they controlled.  These instruments were located on taped or marked out flow sheet on the panel that diagrammed the process flow and made it possible to easily show and control the process.  I saw it was easy to follow flow diagrams and one would work with a model train track plan diagram .  It was made with mini push button switches and slide switches located showing where the Marx switches, un-coupling track sections and the sections of track blocks were actually on the train layout.  (note:  now days these industrial plants have computer controls and process diagrams on computer monitors, some having active touch screens for control).

It was important to keep the control panel easy to operate, quick to operate and logical.  Having 20 switch controllers lined up would make it impossible to find the controller of the switch I wanted to throw quickly and easily.    

The first reason active touch track diagram control panel was picked is I have 20 Marx 1590 track switches on the main train board and having that many switch controllers lined up would be difficult to operate deciding which control switch went with which track switch.  The active touch track plan diagram makes it easy to find the proper switch.  The un-couplers require an additional 14 switches to be matched with the un-coupler track section and would be hard to identify which switch worked which un-coupler track section.  An active touch track diagram control panel solves both these problems.

A second reason is it saves space by combining the switches for the track switches and un-couplers and on the small track diagram.  This is possible by using Radio Shack momentary mini push button control switches which are located at the spot on the diagram where the track switch or un-coupler track is located on the train board.

A third reason is the track diagram shows a picture of the layout and helps view hidden parts of the layout and I like the looks of an actionable touch track diagram as it is less cluttered than a large bank of Lionel switch controllers and seeing the track plan helps identify the different tracks on the layout.  The track diagram helps visitors see where all the tracks are going.  Lionel used track diagrams to show a picture of the track plan on some of their showroom layouts but they did not have active switches on the track diagram to control the layout.


There is Still a Need for a Actionable Touch Track Diagram for modern Train Control Systems

The Actionable Touch Track Diagram developed is a 1940-50s version of a Touch Screen laptop computer.  Many modern model train operators, that use DCS and DCC, walk around with remote controllers and have a layout with 20 or 30 switches, will have the same issues I would have if I just lined up 20 Lionel switch controllers.  Many modern train layouts the operate at slower scale speeds giving them more time to operate the switches.  The use of a small Actionable Touch Track Diagram control panel like mine, will make identifying the switches to be activated, for a given route of the train, easy and quick.  So this type of mini track push button switches on a track diagram still make operation of modern DCS or DSS controlled layout easier, quicker and more accurate (less switch throwing mistakes).

Note on main control panel actionable touch layout track diagram Shown Below:  The Red and Green mini push button switches are for track switches.  The blue push button switches are for uncoupling track sections.  The Black slide switches are for cutting on and off power the track section they are on.  When switch slide WHITE shows completing the white of the diagram, the power is ON.  When the switch slide shows BLACK when the switch slide lever is blocking the white track of the diagram,the power is OFF.

My Trains 4-18-2016 014


The control panel frame was made from ¾ boards and glued and screwed to side of the train board.  The center section is for the track diagram.   A section to the right and one to the left are for two Lionel LW transformers.

IMG_1285


A second newer Actionable Touch Track Diagram Control Panel is on the New Train Board shown below, with the third Lionel LW transformer and an HO transformer for the back and forth street car trolley.

IMG_1299

The actionable control touch track diagram panel is made from 1/8 inch tempered Masonite.  It was painted medium gray.  A 1/8 inch groove was sawed in side board of the layout where the control panel is to be, above the angled side boards of the control panel.  This groove accepts about a 1/4 inch of the 1/8 inch Masonite panel with the diagram and will anchor it on the top.  The Masonite panel is just slid along the control panel side boards and into the groove in the side board of the layout.  Three small 1/2 inch counter sink headed screws are used to hold the bottom of the Masonite diagram control panel to the front edge of the control panel frame.  The removal of these three screws will allow the 1/8 inch Masonite control panel diagram to be slide back a 1/2 inch and then pushed up the bottom  exposing the inside of the control panel for maintenance or expanding the control panel.  See picture below of opened up control panel.   



Making Holes for the Control Panel Switches

The holes were made in the 1/8 inch thick control panel front for mini push button switches with a 1/4 inch diameter drill.  Holes were made for the 1/2 inch by 3/4 inch mini slide switches with the Toro jig saw.  A small portable sabre saw, with a wider blade,  can be used but it harder to make accurate holes with a portable saw.  This was done by drilling a 1/4 inch diameter hole inside the drawn outline where the switch was to be located.  The jig saw coping saw sized saw blade had the tension reduced and was unloosened on the top where it was attached to the jig saw.  The control panel was laid out, right side up, and the top of the saw blade was stuck in the hole in the switch outline to be sawed.  The blade was then reattached to the top part of the jig saw and the blade tension was adjusted to allow sawing.  The outline was followed and the part to be removed was then loose on the saw blade.  The blade tension was released and the top part of the blade was removed and the sawn unwanted part and the control panel were taken off the saw blade.  The control panel front is ready to be move to the next mini slide switch hole to be sawed.

What a mess of wires!

102_0448


Wiring of the Control Panel

Radio Shack mini momentary push button switches and mini slide switches, both spdt and dpdt were used.  Ebay is now a good source for these switches now that Radio Shack is about gone.  Push button switch buttons were painted green for main ovals and red for other.  The blue switch buttons are for uncoupling tracks.  1/8 inch color diameter dots, from Dymo plastic tape cut with a hole punch, were added to each push button switch to increase durability of the paint on the buttons.  1/8 inch wide white auto pin stripe was used to outline the diagram.

I just installed one wire at time and checked circuits as I went.  There is no electrical diagram for the whole layout.  There are dozen or so one page diagrams for all individual circuits but one has to just trace the wires to know how to repair.  Some wires are labelled like Common or C and I tried to make all common wires have black insulation.  Most wiring is 14 ga for track power and switches and 18 ga for lighting and accessories.  The14 gauge wires were too stiff to bend easily when swinging the control panel up for work and put too much force on the mini switch contacts.  So all the large gauge wires had a 20 ga., 8 to 12 inch long pig tails soldered on them to go between the wire and its push button or slide switches on the panel. The wires were just installed one at time for each function, dividing this complicated wiring project a small easy steps.

Some Data on my Actionable Touch Track Diagram Control Panels   (as of 5-8-2022)

Main Control Panel   (26 inch X 9 inch) Mini Switch Inventory

(Key:  Mini Push Buttons = PB,  Slide Switches = SS


Actionable Track Diagram           

Turnout PB        un-coupling PB        Track sect SS        Round H. Rotary      

       38                         15                             14                             8

Side Switch Panels

Mini Push Buttons     Slide Switches

           16                            14


After having this actionable touch track diagram control panel for over forty years, one idea for an improvement has been come up.  The improvement would be to have the direction of the switch on the diagram be illuminated in the route the tracks are set up to.  The operating engineers memory is required now to remember what route has been set on the various track switches.

This would require replacing the existing Radio Shack push button momentary mini switches with illuminated mini switches push button momentary switches.  These switches would light and remain lighted until its paired push button switch, which operates the opposite direction for the track switch is operated.  It is not know what it would take to make these paired push button illuminated switches work this fashion.


Layout Power Keyed ON/Off Switch

I installed a main total layout, keyed, 110 v switch to turn the layout on and off on the right of the control diagram panel frame.  There is a Green pilot light on the control panel right above the keyed switch to indicate when the keyed switch is ON.  The keyed layout On/Off switch gives the chief engineer control over layout use by unauthorized persons (kids, my 1 year old daughter and 3 year old son at the time).

The picture shows a gray plastic case from 35mm film canister being used to shield the 110v contacts on the keyed switch for safety and one of two high voltage wire or contact in either control panel.  The other 110 v switch is for the rotisserie motor on the ice skating rink on the new train board.

102_0453

The layout power cord is now (since 2021) plugged into a Timer Yard light switch, which allows 2, 4 or 6 hours ON before power is cut off for added protection against leaving the layout on as the train room is isolated from the house and out of sight often.



General Wiring

The layout has a single wire common wire that is a 14 ga and black colored insulation.  This makes wiring easier and uses less wire.  All three of the LW track transformers the layout will ultimately have are phased as well as the three 12 v  lighting transformers and the 14 v switch transformer.  There are several common wire junctions, that consist of a brass 1 inch flat head screw and two brass wire washers and a black common wire is daisy chained to 4 or so locations on the bottom of the train board.  A items like switches, building lights, whistles and diesel horns, etc. get there common from the closest common wire junction.  The new commons are added to the common wire junction by loosening the brass screw  an  wrapping a couple inches of the new 18 ga wire around the screw between the two brass washers.

For instance, a Marx switch has a common, a curve and a straight connections.  The common of the Marx switch has a 18 ga section of wire routed to nearest common wire junction, usually less than 4 ft away.  The other two Marx switch 18 ga wires will have to be run the distance from the switch to the control panel some times 10 or 12 feet away.

All 14 and 18 ga wires are single wires, no pairs.  18 gauge wire was used for some close switches and building lights etc. also single wires.  It was found paired wires (like zip 18 ga lamp cord) could not be used to each coil of the Marx 1590 switches due to induction caused with AC power on zip lamp wire or twisted wire would not work the switch coil.  All wire connections to the track were soldered.  This includes power, isolated rails for sensors for two train relay controlled running and track power if used for accessories.  I used no clip-on track connectors or Lionel accessory track switches)

I do not have to label most my wires on my layout.  If a wire needs a label,  I write, in ink, on a small piece of usually white or light colored paper, 1/2 inch wide x 2 inch, the function of the wire, not just a number, that would require keeping a list of numbers and functions.  A written function allows one to know the purpose of the wire immediately, like while crawling under the layout.  This is very helpful when searching for the purpose of a wire among many wires where all the wires have numbers.

I fasten the paper ID tag to the wires with regular clear shinny Scotch tape as I have found it more durable, tougher and longer lasting than the Scotch Magic tape that is frosty and can be written on.  The regular Scotch tape it wrapped around the wire and fastened to both sides of paper tag, covering all the paper on both sides.  I often use double layers of regular Scotch tape.  This will work with any size or gauge of wire.  I have some tags put on by this method for many years on my layout.



Control Panel Details

Picture Below:  Right side the control panel next to the  Active Touch Track Diagram is below.   "Reset" is for LW Trans circuit breaker for outside loop and the button is the actual "Reset Button" on the circuit breaker and you can see the tin tabs on the CB to hold it to the control panel Masonite board.

"Relays" switches to power up 2 trains per 1 track or loop relay.  IN and OUT selects the direction of travel for the inside loop or outside loop of the main train board.  There are two relays and one operates 2 trains on 1 track on the inner loop and the other 2 trains on 1 track on the outer loop.

"1T" selects the LW on left with red light to controls whole train layout. "2 Trans" selects red lighted LW to operate inside loop and green lighted LW on right to run outside loop.  This slide switch is dpdt and both poles were wired to transformer wires as these Radio Shack mini slide switches are not rated for 10 amps.  It has held up for 40 plus years.

102_0455


Green 110 vac pilot light above shows when keyed whole layout switch is  "ON".  This is very important to keep from leaving the layout on all night ( I wish it was brighter!).

Recently, with the train layout in a isolated room above a garage, I was still leaving the layout ON accidentally on a few occasions.  Therefore, a Christmas tree timer was added that the main 110 v plug to the whole layout is plugged.  This timer can be turned for 1 hr, 2 hr or 6 hours ON and then switch OFF.  I usually set it for 1 hour ON and this timer had eliminated the Layout being left on all night or longer,

Charlie

Attachments

Images (11)
  • 102_0448
  • 102_0453
  • 102_0452
  • 102_0459
  • 102_0456
  • 102_0454
  • 102_0455
  • IMG_0157
  • My Trains 4-18-2016 014
  • IMG_1285
  • IMG_1287
Videos (2)
264_0496
102_0503
Last edited by Choo Choo Charlie

OGR Publishing, Inc., 1310 Eastside Centre Ct, Suite 6, Mountain Home, AR 72653
800-980-OGRR (6477)
www.ogaugerr.com

×
×
×
×
×